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Abstract—Cognitive radio (CR) technology is promising for
next generation wireless networks. It allows unlicensed secondary
users to use the licensed spectrum bands as long as they do not
cause unacceptable interference to the primary users who own
those bands. To efficiently allocate resources in CR networks,
stable resource allocation based on graph theory is investigated,
which takes all users' preferences into account. In this paper,
we focus on improving robustness of the stable matching based
resource allocation. A truncated scheme generating almost stable
matchings is first investigated. Based on the properties of the trun-
cated scheme, two types of edge-cutting algorithms, called direct
edge-cutting (DEC) and Gale-Shapley based edge-cutting (GSEC),
are developed to improve resource allocation robustness to the
channel state information variation. To mitigate the problem that
certain secondary users may not be able to find suitable resources
after edge-cutting,multi-stage (MS) algorithms are then proposed.
Numerical results show that the proposed algorithms are robust
to the channel state information variation.
Index Terms—Cognitive radio (CR) network, stable matching,

robustness, almost stable, edge-cutting.

I. INTRODUCTION

W ITH dramatically increasing demands of high-data
rate applications in wireless communications, more

and more spectrum resources are needed. Currently, the spec-
trum bands are licensed to some operators, organizations or
companies, leading to the underutilization of some spectrum
bands. To improve the spectrum efficiency, cognitive radio
(CR) technology has been developed [1], [2], where unlicensed
users, also known as secondary users (SUs), are allowed to use
the licensed spectrum bands as long as they do not generate
unacceptable interference to the licensed users, also known
as primary users (PUs). Due to coexistence of PUs and SUs,
appropriate resource allocation is important to better utilize the
limited spectrum resource.
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For resource allocation in CR networks, schemes based on
different objectives have been studied [3]. Various schemes
have been developed to maximize throughput [4]–[6] and
energy efficiency [7], [8] of SUs. Resource allocation can also
take the competition feature among SUs into account [9]–[11],
where game theory is commonly used. Besides considering
the SUs' performance only, the activities of PUs can also be
considered jointly to further optimize resource allocation [12],
[13].
As a useful and convenient tool, graph theory based schemes

have been studied. Here, we focus on using bipartite graphs
where SUs and PUs are treated as two partite sets and a re-
source allocation result can been seen as a matching of the cor-
responding bipartite graph. To optimize the sum/average utility
of SUs, Hungarian algorithm for finding a maximum matching
has been used [7], [14]. We can also take both PUs' and SUs'
preferences into account and allocate resources based on the
stable matching algorithm [15] due to its advantages. First, it
incorporates fairness issues. Second, efficient algorithms, such
as the Gale-Shapley (GS) algorithm, can be used to find a so-
lution with polynomial complexity. Stable matching based re-
source allocation has been studied in [16]–[19]. In [16], a one-
to-many stable matching and its properties have been studied. In
[17], stable matching based on queue- and channel-aware lists
for cross-layer scheduling has been investigated. In [18], tight
lower and upper bounds for stable allocation performance have
been derived. Moreover, stable matching with auction has been
studied in [19].
Existing schemes on stable matching mainly focus on the de-

sign based on a fixed system condition while the robustness to
the variation of the system conditions is seldom investigated.
In future networks [20], many other types of users, such as ma-
chines, will communicate along with human users, and such net-
works are usually have a large number of nodes. Consequently,
it is desirable to design resource allocation schemes that provide
robust results with respect to changes in user and channel con-
ditions. Thus, robust resource allocation should be considered.
In this paper, we investigate robust resource allocation based

on graph theory, in particular, stable matching. By taking both
SUs and PUs preferences into account, resource allocation is
first performed based on the GS algorithm for stable matchings.
To improve the robustness of resource allocation, a truncated
GS algorithm is studied. Such algorithm has first been proposed
and compared to the maximum utility matching in [21]. We
will investigate the relationship between the matching produced
by the truncated GS algorithm and the optimal stable matching
when they are used in resource allocation in CR systems. Upper
bounds on the number of rounds to reach almost stable resource
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allocation will be derived. Motivated by our theoretical results,
we develop two types of edge-cutting algorithms, called di-
rect edge-cutting (DEC) and Gale-Shapley based edge-cutting
(GSEC), to further improve the robustness of our resource allo-
cation schemes. To mitigate the problem that some SUs may not
be able to find suitable resources to transmit after edge-cutting,
multi-stage (MS) algorithms are developed. Below is a sum-
mary of main contributions of this paper.
• We develop and investigate a stable resource allocation
scheme based on the GS algorithm.

• We study an almost stable resource allocation based on the
truncated GS algorithm. We provide bounds on the num-
bers of rounds for the truncated GS algorithm to achieve
-stable and -approximation of the stable resource
allocation, which show that the maximum degree of the SU
pairs is the most important factor on the performance.

• Motivated by our theoretical results, we developed three
types of edge-cutting algorithms, including DEC, GSEC,
and MS, to improve the robustness of the resource alloca-
tion. Numerical results show that the robustness can indeed
be improved.

The rest of this paper is organized as follows. In Section II, we
introduce the system model. In Section III, resource allocation
based on stable matching is discussed. In Section IV, a truncated
algorithm guaranteeing almost stable matching is investigated.
Two types of edge-cutting algorithms are proposed in Section V.
In Section VI, multi-stage algorithms are developed. Numerical
results are provided in Section VII to show the impact of dif-
ferent system parameters on the performance of the developed
algorithms. Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

We consider an underlay CR network with multiple chan-
nels/bands, where PUs have priorities to use spectrum chan-
nels/bands while SU pairs want to transmit simultaneously.
All channels are modeled as Rayleigh block fading channels.
Without loss of generality, we assume the -th PU uses the -th
spectrum band. As shown in Fig. 1, the channel between the -th
SU pair on the -th spectrum band and the interference channel
from the -th SU transmitter to the -th PU receiver are denoted
as and , respectively. The transmit power of the -th SU
transmitter on the -th spectrum band is . The noise power
on all spectrum bands is assumed to be the same, denoted as
. A centralized system is assumed, where the control center

with CSI allocates resources. Furthermore, the control center
will only assign a frequency band to a SU pair when the corre-
sponding CSI is available, including both CSI between the SU
pairs and of the interference channel from the SU transmitter
to the PU receiver. Correspondingly, the number of spectrum
bands available for the -th SU pair is denoted as and the
number of SU pairs available for the -th spectrum band is de-
noted as . We consider the scenario that only one SU pair
is allowed on each spectrum band and each SU pair can only
access at most one spectrum band.
To protect the PUs, the interference power generated by the

SU pairs on the -th spectrum band should be below a given
threshold, that is,

Fig. 1. System model.

(1)

where is the interference threshold1. Moreover, due to the
amplifier capacity limit, each SU transmitter has a peak transmit
power constraint, , that is,

(2)

If the -th SU pair is assigned to the -th spectrum band, its
throughput can be expressed as

(3)

where denotes the interference from the -th PU transmitter
to the -th SU receiver. We assume that the interference powers,

, are known since the PUs' transmit powers remain the same
with or without SU pairs' transmission and, hence, can be
estimated in advance.
When performing resource allocation to the SU pairs, we

also consider benefits to PUs by incorporating the concept of
spectrum trading into the utility function design [13]. PUs will
charge more from the SU pairs for providing better service. On
the other hand, the performance of PUs will degrade if SU pairs
generate strong interference. Therefore, while SU pairs improve
their own performance by increasing their transmit powers, they
should also get penalties for generating stronger interference. As
in [22] and [23], to capture such features of both PUs and SU
pairs, if the -th SU pair uses the -th spectrum band, the utility
can be defined as a linear combination of the throughput of the
-th SU pair, , and the interference generated to the -th PU,
, expressed as

(4)

1Without loss of generality, we assume, for simplicity, that the interference
threshold is the same on all the spectrum bands. The results can be directly ex-
tended to the system with different interference thresholds on different spectrum
bands.
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Fig. 2. Bipartite graph illustration with and .

and are weight factors.
The transmit power, , can be optimized to maximize the

utility function in (4) subject to constraints (1) and (2). Since the
utility function in (4) is a concave function of , the optimal
transmit power, , is

(5)

where . Then, if the -th SU pair is allocated
on the -th spectrum band to transmit, the utility value of the
-th SU pair and the -th PU can be expressed as .
Even though (4) is used for resource allocation in this paper,

the approaches developed here can easily be adapted for other
utility functions.

III. RESOURCE ALLOCATION BASED ON STABLE MATCHING

As indicated before, we will focus on resource allocation
based on graph theory by taking preferences of both PUs and
SU pairs into account. We first describe our resource allocation
scheme based on stable matching [7] and then discuss its prop-
erties.
Stable matching based resource allocation can be described

with the help of a bipartite graph, say , with bipartition, .
See Fig. 2, where nodes in represent SU pairs and nodes in

represent spectrum bands/PUs. As in Section II, the sizes
of are denoted as , respectively. An edge is put
between the -th SU pair in and the -th PU in if the CSI
of the -th SU pair on the -th spectrum band is known at the
control center. Then, the common utility value of the -th SU
pair and the -th PU, , is assigned to the corresponding
edge.
To define the preference lists for all SU pairs and PUs, we

can regard as a complete bipartite graph, i.e., every node in
is connected to every node in , by setting
if the CSI of the -th SU pair on the -th spectrum band

is not available. Furthermore, we assume that the numbers of
spectrum bands/PUs and SU pairs are equal, i.e., . If the
number of SU pairs exceeds the number of spectrum bands, i.e.,

, we can add virtual spectrum bands/PUs and
edges between all these virtual PUs and all the SU pairs, and
set the weights on these new edges to . Similar operation
can be done when the number of spectrum bands exceeds the
number of SU pairs.
The preference list for the -th SU pair is defined as

(6)

where is a permutation of satisfying

(7)

Similarly, the preference list for the -th PU is defined as

(8)

where is a permutation of satisfying

(9)

Our resource allocation procedure will depend on the prefer-
ence lists of both SU pairs and PUs. To exploit stable matching
from graph theory for resource allocation, more definitions are
needed. A matching in a bipartite graph is a set of pairwise
non-adjacent edges. Given a matching in a bipartite graph with
partition sets and , with (respectively, ) consisting
of nodes represent SU pairs (respectively, PUs), if an SU pair is
matched with a band/PU, we may allocate that band/PU to that
SU pair. Hence, a matching in such a bipartite graph naturally
gives a resource allocation in which each spectrum band has at
most one SU pair and each SU pair accesses at most one spec-
trum band. We call a matching in a graph perfect if all the nodes
in the graph are matched.
An edge in the bipartite graph, , between the -th SU pair

and the -th PU, denoted as , where and denote the
-th SU pair and the -th PU, respectively, is said to be unstable
relative to a matching in , if
1 ,
2 is unmatched by , or prefers over its current match

in , and
3 is unmatched by , or prefers over its current match

in .
If there is no unstable edges relative to the matching, , then
it is called stable.
Based on the above definition, it is desirable to find a resource

allocation that corresponds to a stable matching. This can be
done by using the GS algorithm [15]. In Table I, we give a ver-
sion of the GS algorithm in which PUs propose to SU pairs (see
Step 2). However, the roles of PUs and SU pairs can be ex-
changed. So the GS algorithm can be presented in which SU
pairs propose to PUs. Here, we focus on the PU-proposing ver-
sion of the GS algorithm as shown in Table I.
By applying the PU-proposing version of the GS algorithm

in Table I, we have the following result (see [15]).
Lemma 1: For the complete bipartite graph in which the

number of SU nodes equals the number of PU nodes, the
PU-proposing version of the GS algorithm generates a perfect
stable matching. Moreover, for this matching, each PU is
matched to the best possibility among all stable matchings,
and each SU pair is matched to the worst possibility among all
stable matchings.
According to Lemma 1, we know that, if we apply the ver-

sion of the GS algorithm in Table I, each PU will be matched
to the best possibility among all stable matchings. That means,
the weight in the resulting stable matching for each PU is max-
imum among all the stable matchings. Thus, the sum or average
weight of the matching must be the maximum among all the
stable matchings [15].
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TABLE I
THE GALE-SHAPLEY PREFERENCE-BASED CHANNEL ALLOCATION ALGORITHM

Theorem 2: Let be a complete bipartite graph with parti-
tion sets such that (respectively, ) consists of SU
(respectively, PU) nodes. Define the weight on edges according
to (4) and (5), and define preference lists of nodes according
to (6)–(9). Then, the GS algorithm in Table I produces a stable
resource allocation that has maximum sum or average weight
among all possible stable resource allocations.
As we pointed out before, there are two versions of GS algo-

rithms, the PU- and the SU-proposing ones. In general, the PU-
and SU-proposing versions may provide different matching
results. Next, we show that, for our studied scenario, the stable
matching produced by the version in Table I is unique, regard-
less of PU- or SU-proposing algorithm is used. By Lemma 1,
SU pairs are matched to the worst possibility among all stable
matchings after applying the PU-proposing version of the GS
algorithm. On the other hand, if we apply the SU-proposing
version of the GS algorithm, SU pairs will be matched to the
best possibility among all stable matchings [15]. Since the
weights on the edges are the same for both SU-proposing and
PU-proposing versions, the maximum sum weight among all
possible stable matchings is uniquely determined no matter
which version of the GS algorithm we use. Hence, the best
possibility and the worst possibility for each SU pair among all
stable matchings are the same. Thus, we have
Theorem 3: The stable matching produced in the Theorem 2

is unique.
The conclusion on uniqueness in Theorem 3 is the same as in

[24]; but the procedure used there is different from the above.
Note that, for our scenario, this uniqueness conclusion implies
that the same allocation results are obtained regardless of which
version of GS algorithm is applied.
Note that Theorem 3 holds if (4) is replaced by a different

utility function, as long as the preference lists of SU pairs and
PUs are calculated from the weight function on the edges.

IV. ALMOST STABLE RESOURCE ALLOCATION

In the previous section, we proposed a stable resource allo-
cation scheme based on the GS algorithm and discussed some

of its properties. However, the stable matching results need not
be robust to CSI variation. In fact, CSI variation of one channel
may lead to a totally different stable matching result, which is
not desirable in practice, especially when the number of nodes
in the system is large. To measure the system robustness, we use
the amount of variation of the resource allocation after CSI vari-
ation as a metric. Based on our definition, with CSI variation,
the larger the resource allocation variation is, the less robust the
system is to the CSI variation and vice versa.
To improve the robustness of the resource allocation scheme

with respect to CSI variation, we consider a truncated GS al-
gorithm. Instead of executing the GS algorithm fully to get a
stable resource allocation, the truncated GS algorithm outputs
a resource allocation result after executing a fixed number of
rounds in the GS algorithm. Note that the GS algorithm, as
in Table I, consists of a number of asking-accepting/rejecting
rounds; during each round the PUs propose to the SU pairs and
the SU pairs answer the proposals. Denote by the number of
rounds we execute the algorithm. From [21], based on the trun-
cated GS algorithm, a change of CSI of one node will only af-
fect the part of resource allocation within distance from the
node of the change. Comparing to the stable resource allocation,
where a change of CSI of one node may affect all nodes in the
system, allocation based on the truncated GS algorithm should
be much more robust to the CSI variation.
The resulting resource allocation from the truncated GS al-

gorithm may be unstable. To measure the stability of such re-
source allocation, we introduce the concept of -stable (or al-
most stable) matching. Let be given. The matching, ,
in the graph, , is said to be -stable if the number of unstable
edges in is at most , where is size of . Let
be the maximum degree of nodes (i.e.,

, where are the numbers of edges at the -th SU
pair and the -th PU, respectively). For the -stable matching,
we have the following theorem from [21]:
Theorem 4: By executing at most rounds of the GS

algorithm, we can find an -stable resource allocation.
The detailed proof for Theorem 4 can be found in [21]. Based

on the procedure in [21], we can further bound the number of
execution rounds by using , the maximum
degree among the nodes representing SU pairs only.
Theorem 5: By executing at most rounds of the GS

algorithm, we can find an -stable resource allocation.
Our proof of Theorem 5 follows the same procedure as that

of Theorem 4 by using the maximum degree among nodes for
SU pairs, , instead of the maximum degree of all nodes, .
It is clear that . Hence, in practical scenarios, the bound
in Theorem 5 is tighter than the bound in Theorem 4 from [21].
Besides the stability property, we also concern about the

utility of resource allocation. Given one resource allocation,
, its utility, denoted as , is defined as the sum utilities of

PUs/SU pairs in . Let denote the stable resource allocation
produced by the GS algorithm, with as the corresponding
utility. A resource allocation, , is a -approximation
of the maximum-weight stable matching if its utility, ,
satisfies . For the truncated GS algorithm,
we have the following conclusion regarding its utility and the
detailed proof is in the Appendix.
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Theorem 6: By executing at most rounds of the GS
algorithm, we can find a -approximation of themaximum-
weight stable resource allocation.
In [21], the result based on the truncated GS algorithm is com-

pared with the maximum-weight resource allocation (instead of
stable resource allocation). For the scenario studied by us, it
is more reasonable to compare the result from truncation with
other stable resource allocation.
The robustness of the resource allocation from the truncated

GS algorithm is affected by , the number of rounds the GS
algorithm is executed. A change in the bipartite graph only af-
fects the result in the radius- neighbourhood of the changing
point, instead of the whole resource allocation result [21]. The-
orems 5 and 6 provide upper bounds on to achieve -stability
and -approximation of the maximum-weight stable re-
source allocation, respectively. Both bounds depend only on
and . Given , decreasing is expected to help decrease the
required number of executing rounds, . From these observa-
tions, several algorithms for decreasing are developed in the
next section in order to achieve robust designs.

V. EDGE-CUTTING FOR ROBUST DESIGN

Based on our discussion in the previous section, the robust-
ness of resource allocation obtained from the truncated GS al-
gorithm depends on the number of rounds, say , of the GS al-
gorithm that we execute. Smaller leads to higher robustness.
Since the smallest to achieve -stability or -approxi-
mation depends on the instantaneous CSI, we instead focus on
reducing the upper bounds on .
From Theorems 5 and 6, the upper bounds on to achieve

-stability or -approximation are related to , the max-
imum number of available bands of any SU pair. Both bounds
can be decreased by decreasing . Thus, to improve robustness
of resource allocation, a small is preferable. It is possible that
SU pairs only access CSI of a small number of PU bands, and

is small naturally. However, PUs, in order to improve their
own utilities, may be willing to share their information to attract
more SU pairs, as in the spectrum trading scenario [13]. In this
case, the maximum number of bands available at SU pairs, ,
may be large. Note that, the number of available bands for the
-th SU pair is the number of edges connected to it in the con-
structed bipartite graph.
For robust design, we propose edge-cutting algorithms to de-

crease the maximum number of edges connected to SU pairs,
. In other words, if the number of available bands at the -th

SU pair, , is larger than a given threshold, denoted as ,
it will be asked to give up some bands before performing re-
source allocation. In the following, two different types of edge-
cutting algorithms will be developed: direct edge-cutting (DEC)
that cuts edges based on the preference lists, and GS-Based
Edge-Cutting (GSEC) that cuts edges based on the GS algo-
rithm.

A. Direct Edge-Cutting (DEC)
In this part, we propose ways to delete edges according to the

preference lists of SU pairs and/or PUs. We will first describe
a general approach that depends on a parameter , and
we get two special approaches by letting or .

For the edge, , between the -th SU pair and the -th
PU , let if is the -th element on 's preference
list, and if is the -th element in 's preference
list. We set a preference value on the edge as a convex
combination of and , which can be expressed as

, where . We let each SU pair keep
(a fixed constant) edges that have the highest preference

values. So in the resulting graph, each SU pair is incident with
precisely edges. We call this process SP-preferred DEC
(SP-DEC) algorithm, as it can be based on the preference lists of
both SUs and PUs. The weight factors can be adjusted according
to the priorities in the preference lists of SU pairs and PUs. We
consider two extreme cases: and .
When , then SP-DEC keeps edges at each SU pair

that is at the top of its preference list; this approach is called
SU-preferred DEC (S-DEC) as it only takes SU's preference
lists into consideration.
When , then SP-DEC keeps edges at each SU pair

with the highest preference values (we can randomly choose
the edges that have same preference value), and those edges
occur at the top of PUs' preference lists; this approach is called
PU-preferred DEC (P-DEC) as it takes PUs' preference lists into
consideration.

B. GS-Based Edge-Cutting (GSEC)
The DEC procedures described above reduce the maximum

number of edges connected to the SU pairs, and are easy to im-
plement. However, they do not take the original GS matching
process into account. Hence, the resource allocation results ob-
tained from the GS algorithm after the DEC procedures may be
quite different from the result obtained by applying the GS algo-
rithm on the original graph. Moreover, it is possible that certain
SU pairs with similar preference lists will compete with each
other, so there is a chance that some of them are not allocated
any resource.
For instance, consider a system with two PUs, and , and

two SU pairs, and , where both and prefer to ,
and both and prefer to . Applying the GS algorithm in
Table I, is assigned to , and is assigned to . However,
the result can be different if we apply the GS algorithm after a
DEC procedure. Set , so that the maximum number
of edges connected to each SU pair is one. Applying S-DEC, we
obtain a graph in which both and are connected to , but
not to . Then applying the GS algorithm to the new graph,
is allocated to the channel of , but cannot transmit.
In order to use DEC to obtain a resource allocation result

closer to the result obtained by applying the GS algorithm, we
propose an edge-cutting algorithm based on the GS algorithm
(GSEC algorithm). In general, the edges involved in the first
few rounds of the GS algorithm will be kept. However, minor
changes are made to satisfy the requirement on the maximum
number of edges connected to each node representing an SU
pair. In order to make sure the maximum number of edges con-
nected to each SU pair is , each SU pair can reject at most

edges during the GS process. We now describe the
GSEC algorithm. See Table II.
First, a vector is used in which the th coordinate,
, records the number of edges rejected by the th SU pair, .
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TABLE II
GS-BASED EDGE-CUTTING (GSEC) ALGORITHM

Initially for all , and all SU pairs are involved. During
each round of the GS algorithm in Table I, each PU asks its
most preferred SU pair. At the end of a round, increase by
the number of edges/PUs rejected by during this round, and
update , the set of the indices of the PUs who have asked

during this round. There are three cases after executing a
particular round of the GS algorithm:

, and .
If , then the number of PUs rejected by has

not reached the limit; in this case, keep all edges between and

the PUs with indices in , and remains in the process for the
next round.
If then the number of PUs rejected by

reaches the limit; keep all edges between and the PUs with
indices in , but is removed from the process.
Now assume . Then the number of PUs re-

jected by exceeds the limit. So will be removed from the
process. To meet the requirement that , we remove

PUs with indices in . There are different
ways to remove PUs with indices in . A natural way is to re-
move those PUs with the lowest ranks in the
preference list of . Thus, the process keeps the PUs on the top
of 's preference list, and it is independent of other PUs and SU
pairs.
The GSEC process stops when all SU pairs are removed from

the process or when theGS algorithm stops. It is possible that the
GS algorithm stops before all SU pairs are removed. In this case,
all PUs and SU pairs are matched. If this case occurs,

edges can be added for each that is still in the process.
Therefore, when the GSEC process stops, each SU pair will

have edges. The detailed algorithm is given in Table II.
Note that, during the process of the GSEC, a matching will be
generated as well. This matching will be the same as the one
if we execute the GS algorithm on the bipartite graph from the
GSEC. Thus, we can use thematching generated from theGSEC
directly for resource allocation without running the GS algo-
rithm again.
To illustrate the difference between GSEC and DEC, we

apply GSEC algorithm to the example at the beginning of this
subsection. Both PUs, and , ask the first SU pair, ,
during the first round. Since the can only keep
edge and it prefers over , it keeps only the edge ,
and leaves the process. In the second round, the second PU,
, asks the second SU, , and keeps the edge . The GS

algorithm stops. (Since both and have edges,
no extra edges need to be added.) Based on the graph after
GSEC, will be allocated to the channel of while will
be on the channel of . This resource allocation result is the
same as the original GS algorithm while the maximum number
of edges connected to each SU pair is one after the GSEC.
Therefore, resource allocation based on the GSEC process
might give a result that is closer to the original GS algorithm
while reducing the maximum number of edges connected to
individual SU pairs.
Remark 1: Essentially, both DEC and GSEC shorten the pref-

erence lists of SU pairs and PUs. Any change on the deleted
edges has no impact on the resource allocation results. This also
explains why the edge-cutting algorithms improve robustness of
the resource allocation.
Remark 2: After edge-cutting, some of SU pairs may not

be able to find suitable channels. Consider the example at the
beginning of Section V-B, only the first SU pair can transmit
after DECwhile both of them can transmit without edge-cutting.
In the next section, a multi-stage edge-cutting algorithm will be
proposed to mitigate this problem.
Remark 3: In addition to improving the robustness of re-

source allocation, edge-cutting also reduces the computational
complexity.
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VI. MULTI-STAGE EDGE-CUTTING

In the previous section, we proposed two different types of
edge-cutting algorithms (DEC and GSEC) to reduce the max-
imum number of channels available at individual SU pairs after
edge-cutting, , to improve the robustness of resource allo-
cation with respect to the CSI variation. We expect that resource
allocation results are more robust when is made smaller.
However, if is too small (so the number of channels avail-
able at each SU pair is small), some SU pairs may not be able
to find suitable channels to transmit. To mitigate this problem,
we propose a multi-stage (MS) edge-cutting algorithm.
The basic idea of the MS algorithm is to operate the GS algo-

rithm after DEC or GSEC algorithms several times and to ad-
just the edge-cutting result during the procedure to increase the
number of SU pairs that are allocated channels to transmit. The
procedure is called MS algorithm, briefly described as follows.
First, the DEC or the GSEC algorithm is operated on the original
graph and then the GS algorithm. (This is the same as the proce-
dure in Section V.) We then output the corresponding edge-cut-
ting result only for the SU pairs who have been assigned chan-
nels. Remove the matched SU pairs, the corresponding matched
PU nodes, and the edges among them from the procedure. De-
note the sets of remaining SU pairs and PUs as and , re-
spectively. Note that no SU pair in was asked by any PUs
in the previous stage since if one SU pair was asked, it was
assigned a channel and would not be in . Thus, the nodes
in has no impact on the previous stage. Then, we can ig-
nore all previous procedures related to nodes in and con-
duct the edge-cutting and the resource allocation again based
on the subgraph of the original graph constituting of all nodes in

, and corresponding edges. Through this way, the max-
imum number of edges connected to each SU pair involving in
the MS algorithm is still . Repeat the procedure until all
nodes are removed. The detailed procedure is given in Table III.
Moreover, like the GSEC algorithm, the MS algorithm will

generate a matching during the process. This matching will be
the same as the one if we execute the GS algorithm on the output
bipartite graph from the MS algorithm and thus, can be used
directly for resource allocation.
In general, by using theMS algorithm, the number of SU pairs

which can transmit increases while the maximum number of
edges connected to each SU pair kept in the graph is still .

VII. NUMERICAL RESULTS

In this section, numerical results are presented to show the
performance of the proposed algorithms in the application sce-
nario where the number of users is large and the number of chan-
nels with CSI variation is small. Here, we consider the case with
200 SU pairs and 200 PUs, i.e., and assume all
CSI is known. Results are averaged after 20 000 trials. For each
trial, algorithms are executed once based on the original CSI
and then, conducted second time by changing CSI of 5 SU pairs.
The utility gap shown in Figs. 3(b), 4(b), and 5(b) is defined as

, where is the sum utility based on the GS algo-
rithm and is the utility based on the proposed algorithm. The
SU allocation variation is defined as the number of SU pairs with
different allocation results after CSI change. The SU allocation

TABLE III
MULTI-STAGE (MS) EDGE-CUTTING ALGORITHM

variation saving in Figs. 3(a), 4(a), and 5(a) is the relative value
compared to the GS algorithm. We also show the allocation dif-
ference between each proposed algorithm and the GS algorithm,
which is defined as the number of SU pairs with different alloca-
tion results between a proposed algorithm and the GS algorithm.
For a resource allocation scheme, smaller resource allocation
variation means higher robustness to the CSI variation. For all
results, we set the signal-to-noise ratios (SNRs) between any
SU pair and any interference channel from SU transmitter to
the PU receiver as 0 dB and dB, respectively. Interference
threshold is dB and the maximum transmit power is 10 dB.

A. Single-Stage Truncation or Edge-Cutting
Figs. 3(a) and (b) show the impact of the maximum number

of available bands for each SU pair, , on allocation varia-
tion saving and utility, where . Fig. 3(a) shows that the
reduction in increases the robustness of resource alloca-
tion for all edge-cutting algorithms. Even though smaller
leads to a larger utility gap from the GS algorithm as shown in
Fig. 3(b), the saving on SU allocation variation is significant
compared to that of the utility gap.
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Fig. 3. Performance for algorithms with truncated or edge-cutting. (a) SU
allocation variation saving. (b) Utility gap. (c) Resource allocation difference.

Next, let us compare the performance of the truncated GS al-
gorithm and the edge-cutting algorithms. Fig. 3(a) shows that
when is small, the edge-cutting algorithms may provide
higher resource allocation robustness than the truncated GS al-
gorithm. When is large, the truncated GS algorithm can
provide more robust results. For the utility gap in Fig. 3(b), ex-
cept for the GSEC before CSI change, it is larger for edge-cut-
ting algorithms than for the truncated GS algorithm when
is small, and the other way around when is large. Exe-
cuting the GSEC algorithm before CSI change can provide a
negligible performance gap from the GS algorithm. This is due

Fig. 4. Performance for algorithms with truncation and edge-cutting. (a) SU
allocation variation saving. (b) Utility gap. (c) Resource allocation difference.

to the fact the edges kept by the GSEC algorithm are based on
the GS algorithm, and almost all edges involved in the GS algo-
rithm are kept. The advantage cannot be maintained after CSI
changes. But, the GSEC algorithm still provides smaller utility
gap than DEC algorithms. Different DEC algorithms have sim-
ilar performance.
As we discussed in Section V-B, it is expected that resource

allocation results from GSEC are closer to those from the GS al-
gorithm than those from DEC, which is illustrated in Fig. 3(c).
GSEC provides the same resource allocation result as the GS
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Fig. 5. Performance for different multi-stage algorithms. (a) SU allocation
variation saving. (b) Utility gap. (c) Resource allocation difference.

algorithm even when the maximum available channels allowed
at each SU pair is only 10% of all channels, i.e., .
However, the DEC algorithms always provide resource alloca-
tion results that are different from those from the GS algorithm.
This advantage of GSEC is only significant for the case before
CSI change. After CSI change, the performance gap becomes
smaller since GSEC is operated based on the CSI before change.
Comparing the results in Fig. 3(a), GSEC loses certain level of
robustness in order to get resource allocation results closer to
those from the GS algorithm. This is the case because the more

the algorithm depends on the original graph, the more sensitive
it is to change on the graph (i.e., the CSI variations).

B. Single-Stage Truncation and Edge-Cutting
Besides operating truncation or edge-cutting separately, these

operations can be combined. For example, we can fist apply
edge-cutting algorithms on the original graph. We then run the
GS algorithm on the new graph, and stop when we obtain a re-
source allocation that is -stable or is an -approximation
compared with the results on the original graph. Figs. 4(a) and
(b) show the SU allocation variation saving and utility perfor-
mance, respectively. The results based on truncation only are
also provided for comparison reason. Moreover, all three DEC
algorithms have similar performance, and only results based
on S-DEC are provided here. As increases, the perfor-
mance curves of algorithms with edge-cutting and truncation
converge to that of the truncated only algorithm, instead of to
that of the original GS algorithm. Compared with the results
in Figs. 3(a) and (b), utilizing both edge-cutting and truncation
can result in higher SU allocation variation saving accompanied
a larger utility gap. The resource allocation difference is shown
in Fig. 4(c). For all edge-cutting algorithms with truncation, the
number of different resource allocations is larger compared to
that from the edge-cutting only case and the performance curve
converges to the truncation only case as increases.

C. Multi-Stage Truncation and Edge-Cutting
In this part, the performance of theMS algorithm is presented.

Figs. 5(a) and (b) show the utility gap and SU allocation vari-
ation saving, respectively. With the help of the MS algorithm,
the utility gap between the MS algorithm and the original GS
algorithm is significantly reduced compared with the single-
stage algorithm. The gap based on the CSI before the change
is negligible while there is a small gap, less than 0.5%, after
the CSI change. However, the SU allocation variation saving
is smaller compared with the corresponding single-stage algo-
rithms. Comparing results based on different edge-cutting al-
gorithms, the utility gap for MS GSEC is slightly larger than
the MS DEC algorithms while it can have higher SU allocation
variation saving. This is different from the single-stage case. For
MS GSEC, it can allocate more SU pairs in the first stage and
the impact of the latter stages is smaller compared to the other
DEC algorithms. Thus, it can keep higher SU allocation varia-
tion saving than the single-stage algorithm while the utility gap
is larger as well.
Moreover, Fig. 5(c) shows the allocation difference between

the MS algorithm and the original GS algorithm. Comparing
with the results in Fig. 4(c), the number of allocation difference
based on the MS algorithms is smaller than the one from the
single-stage algorithm.

VIII. CONCLUSION
In this paper, we have studied robust resource allocation for

CR networks. First, we develop a resource allocation scheme
based on stable matching, which takes both SU pairs' and PUs'
preferences into account. We then discuss the properties of al-
most stable resource allocation, which is robust to the CSI vari-
ation compared with stable resource allocation. Based on the
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properties of almost stable resource allocation, we propose the
DEC and GSEC algorithms to further improve the robustness
of the resource allocation scheme. The MS algorithms are then
discussed to compensate for possible losses from the DEC and
GSEC algorithms. Numerical results show that our proposed
schemes are robust to the CSI variations.

APPENDIX A
PROOF OF THEOREM 6

The proof of Theorem 6 follows an argument in [21]. Let
denote the number of rounds we execute the GS algorithm.

For , let denote the matching at the end of
-th round. The -th SU pair is denoted as , and the -th PU

is denoted by . Define as a weight function on edge. So
is the weight of edge between and . If is

matched at the end of the -th round, we use to denote
the PU matched to . Let denote the set of those SU
pairs which have not rejected at the end of -th round (which
is called the candidate set of ).
During any round, each PU removes at most one SU node

from its candidate set, since each PU proposes to at most one
SU pair during any round. The edge is called lost if
is removed from the candidate set of . We use to denote
the set of the lost edges by the end of the -th round. For ,
the matching at the end of the -th round, we define the weight
of as (if is matched in ) and

(if is unmatched in ), where
, see (4) and (5). Then, the total weight

of the matching can be expressed as

(10)

where denotes the set of SU nodes. Moreover, the total
weight of the edges in , denoted as , is defined as the
sum of weights of the edges in .
We define the potential of , denoted as , as follows.

If is matched in or then set .
Otherwise, set

(11)

which is the maximum weight of edges connecting to the SU
pairs in . The total potential of the matching at the
end of -th round is the sum of the potentials of all PUs, that is,

(12)

where denotes the set of PU nodes.
Lemma 7: For .
Proof: Let denote the -th PU node. If then

is not matched by and . Thus, during the
-th round, is rejected by some SU pair, say (the -th SU

node), and the edge is lost. So .

Note that prefers over other SU pairs in , which
means, . Hence,

and the lemma is proved.
Lemma 8: For .
Proof: Since and

, we compare and for each
.

If is matched in both and , then by definition,
.

If is matched in , but not in , then by definition,
.

Now assume that is matched to some in
but is not matched in . Then and

, where is such that .
Moreover, since in the -th round, must reject and accept
another PU, say with , we have
and . Thus,

which is equivalent to

By summing up over all PUs, we have .
Lemma 9: For .
Proof: By Lemmas 7 and 8,

.

Lemma 10: For all .
Proof: Let denote the -th SU pair and denote the -th

PU. If (i.e., lost by the end of the -th round), then
is matched to a better choice, , by the end of the -th

round. That is, . Since can lose at most
edges, the total weight of all lost edges adjacent to is

at most . Hence, by summing over all SU
pairs, we obtain .

By Lemmas 9 and 10, we have
Lemma 11: For any real and integer

.
Next, we present the proof of Theorem 6.
Proof: Let be the unique stable matching produced by

the GS algorithm. We use to denote the -th SU pair and
to denote the -th PU. Suppose .
Note that when is matched to in for some (pos-

sibly ), prefers over and
. Also note that when is not matched in , then

has not asked , and .
Hence,
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and therefore

From Lemma 11, we conclude that

whenever .
Thus, Theorem 6 follows by choosing .
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Graph-Based Robust Resource Allocation for
Cognitive Radio Networks

Lu Lu, Student Member, IEEE, Dawei He, Geoffrey Ye Li, Fellow, IEEE, and Xingxing Yu

Abstract—Cognitive radio (CR) technology is promising for
next generation wireless networks. It allows unlicensed secondary
users to use the licensed spectrum bands as long as they do not
cause unacceptable interference to the primary users who own
those bands. To efficiently allocate resources in CR networks,
stable resource allocation based on graph theory is investigated,
which takes all users' preferences into account. In this paper,
we focus on improving robustness of the stable matching based
resource allocation. A truncated scheme generating almost stable
matchings is first investigated. Based on the properties of the trun-
cated scheme, two types of edge-cutting algorithms, called direct
edge-cutting (DEC) and Gale-Shapley based edge-cutting (GSEC),
are developed to improve resource allocation robustness to the
channel state information variation. To mitigate the problem that
certain secondary users may not be able to find suitable resources
after edge-cutting,multi-stage (MS) algorithms are then proposed.
Numerical results show that the proposed algorithms are robust
to the channel state information variation.
Index Terms—Cognitive radio (CR) network, stable matching,

robustness, almost stable, edge-cutting.

I. INTRODUCTION

W ITH dramatically increasing demands of high-data
rate applications in wireless communications, more

and more spectrum resources are needed. Currently, the spec-
trum bands are licensed to some operators, organizations or
companies, leading to the underutilization of some spectrum
bands. To improve the spectrum efficiency, cognitive radio
(CR) technology has been developed [1], [2], where unlicensed
users, also known as secondary users (SUs), are allowed to use
the licensed spectrum bands as long as they do not generate
unacceptable interference to the licensed users, also known
as primary users (PUs). Due to coexistence of PUs and SUs,
appropriate resource allocation is important to better utilize the
limited spectrum resource.
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For resource allocation in CR networks, schemes based on
different objectives have been studied [3]. Various schemes
have been developed to maximize throughput [4]–[6] and
energy efficiency [7], [8] of SUs. Resource allocation can also
take the competition feature among SUs into account [9]–[11],
where game theory is commonly used. Besides considering
the SUs' performance only, the activities of PUs can also be
considered jointly to further optimize resource allocation [12],
[13].
As a useful and convenient tool, graph theory based schemes

have been studied. Here, we focus on using bipartite graphs
where SUs and PUs are treated as two partite sets and a re-
source allocation result can been seen as a matching of the cor-
responding bipartite graph. To optimize the sum/average utility
of SUs, Hungarian algorithm for finding a maximum matching
has been used [7], [14]. We can also take both PUs' and SUs'
preferences into account and allocate resources based on the
stable matching algorithm [15] due to its advantages. First, it
incorporates fairness issues. Second, efficient algorithms, such
as the Gale-Shapley (GS) algorithm, can be used to find a so-
lution with polynomial complexity. Stable matching based re-
source allocation has been studied in [16]–[19]. In [16], a one-
to-many stable matching and its properties have been studied. In
[17], stable matching based on queue- and channel-aware lists
for cross-layer scheduling has been investigated. In [18], tight
lower and upper bounds for stable allocation performance have
been derived. Moreover, stable matching with auction has been
studied in [19].
Existing schemes on stable matching mainly focus on the de-

sign based on a fixed system condition while the robustness to
the variation of the system conditions is seldom investigated.
In future networks [20], many other types of users, such as ma-
chines, will communicate along with human users, and such net-
works are usually have a large number of nodes. Consequently,
it is desirable to design resource allocation schemes that provide
robust results with respect to changes in user and channel con-
ditions. Thus, robust resource allocation should be considered.
In this paper, we investigate robust resource allocation based

on graph theory, in particular, stable matching. By taking both
SUs and PUs preferences into account, resource allocation is
first performed based on the GS algorithm for stable matchings.
To improve the robustness of resource allocation, a truncated
GS algorithm is studied. Such algorithm has first been proposed
and compared to the maximum utility matching in [21]. We
will investigate the relationship between the matching produced
by the truncated GS algorithm and the optimal stable matching
when they are used in resource allocation in CR systems. Upper
bounds on the number of rounds to reach almost stable resource

1053-587X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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allocation will be derived. Motivated by our theoretical results,
we develop two types of edge-cutting algorithms, called di-
rect edge-cutting (DEC) and Gale-Shapley based edge-cutting
(GSEC), to further improve the robustness of our resource allo-
cation schemes. To mitigate the problem that some SUs may not
be able to find suitable resources to transmit after edge-cutting,
multi-stage (MS) algorithms are developed. Below is a sum-
mary of main contributions of this paper.
• We develop and investigate a stable resource allocation
scheme based on the GS algorithm.

• We study an almost stable resource allocation based on the
truncated GS algorithm. We provide bounds on the num-
bers of rounds for the truncated GS algorithm to achieve
-stable and -approximation of the stable resource
allocation, which show that the maximum degree of the SU
pairs is the most important factor on the performance.

• Motivated by our theoretical results, we developed three
types of edge-cutting algorithms, including DEC, GSEC,
and MS, to improve the robustness of the resource alloca-
tion. Numerical results show that the robustness can indeed
be improved.

The rest of this paper is organized as follows. In Section II, we
introduce the system model. In Section III, resource allocation
based on stable matching is discussed. In Section IV, a truncated
algorithm guaranteeing almost stable matching is investigated.
Two types of edge-cutting algorithms are proposed in Section V.
In Section VI, multi-stage algorithms are developed. Numerical
results are provided in Section VII to show the impact of dif-
ferent system parameters on the performance of the developed
algorithms. Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

We consider an underlay CR network with multiple chan-
nels/bands, where PUs have priorities to use spectrum chan-
nels/bands while SU pairs want to transmit simultaneously.
All channels are modeled as Rayleigh block fading channels.
Without loss of generality, we assume the -th PU uses the -th
spectrum band. As shown in Fig. 1, the channel between the -th
SU pair on the -th spectrum band and the interference channel
from the -th SU transmitter to the -th PU receiver are denoted
as and , respectively. The transmit power of the -th SU
transmitter on the -th spectrum band is . The noise power
on all spectrum bands is assumed to be the same, denoted as
. A centralized system is assumed, where the control center

with CSI allocates resources. Furthermore, the control center
will only assign a frequency band to a SU pair when the corre-
sponding CSI is available, including both CSI between the SU
pairs and of the interference channel from the SU transmitter
to the PU receiver. Correspondingly, the number of spectrum
bands available for the -th SU pair is denoted as and the
number of SU pairs available for the -th spectrum band is de-
noted as . We consider the scenario that only one SU pair
is allowed on each spectrum band and each SU pair can only
access at most one spectrum band.
To protect the PUs, the interference power generated by the

SU pairs on the -th spectrum band should be below a given
threshold, that is,

Fig. 1. System model.

(1)

where is the interference threshold1. Moreover, due to the
amplifier capacity limit, each SU transmitter has a peak transmit
power constraint, , that is,

(2)

If the -th SU pair is assigned to the -th spectrum band, its
throughput can be expressed as

(3)

where denotes the interference from the -th PU transmitter
to the -th SU receiver. We assume that the interference powers,

, are known since the PUs' transmit powers remain the same
with or without SU pairs' transmission and, hence, can be
estimated in advance.
When performing resource allocation to the SU pairs, we

also consider benefits to PUs by incorporating the concept of
spectrum trading into the utility function design [13]. PUs will
charge more from the SU pairs for providing better service. On
the other hand, the performance of PUs will degrade if SU pairs
generate strong interference. Therefore, while SU pairs improve
their own performance by increasing their transmit powers, they
should also get penalties for generating stronger interference. As
in [22] and [23], to capture such features of both PUs and SU
pairs, if the -th SU pair uses the -th spectrum band, the utility
can be defined as a linear combination of the throughput of the
-th SU pair, , and the interference generated to the -th PU,
, expressed as

(4)

1Without loss of generality, we assume, for simplicity, that the interference
threshold is the same on all the spectrum bands. The results can be directly ex-
tended to the system with different interference thresholds on different spectrum
bands.
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Fig. 2. Bipartite graph illustration with and .

and are weight factors.
The transmit power, , can be optimized to maximize the

utility function in (4) subject to constraints (1) and (2). Since the
utility function in (4) is a concave function of , the optimal
transmit power, , is

(5)

where . Then, if the -th SU pair is allocated
on the -th spectrum band to transmit, the utility value of the
-th SU pair and the -th PU can be expressed as .
Even though (4) is used for resource allocation in this paper,

the approaches developed here can easily be adapted for other
utility functions.

III. RESOURCE ALLOCATION BASED ON STABLE MATCHING

As indicated before, we will focus on resource allocation
based on graph theory by taking preferences of both PUs and
SU pairs into account. We first describe our resource allocation
scheme based on stable matching [7] and then discuss its prop-
erties.
Stable matching based resource allocation can be described

with the help of a bipartite graph, say , with bipartition, .
See Fig. 2, where nodes in represent SU pairs and nodes in

represent spectrum bands/PUs. As in Section II, the sizes
of are denoted as , respectively. An edge is put
between the -th SU pair in and the -th PU in if the CSI
of the -th SU pair on the -th spectrum band is known at the
control center. Then, the common utility value of the -th SU
pair and the -th PU, , is assigned to the corresponding
edge.
To define the preference lists for all SU pairs and PUs, we

can regard as a complete bipartite graph, i.e., every node in
is connected to every node in , by setting
if the CSI of the -th SU pair on the -th spectrum band

is not available. Furthermore, we assume that the numbers of
spectrum bands/PUs and SU pairs are equal, i.e., . If the
number of SU pairs exceeds the number of spectrum bands, i.e.,

, we can add virtual spectrum bands/PUs and
edges between all these virtual PUs and all the SU pairs, and
set the weights on these new edges to . Similar operation
can be done when the number of spectrum bands exceeds the
number of SU pairs.
The preference list for the -th SU pair is defined as

(6)

where is a permutation of satisfying

(7)

Similarly, the preference list for the -th PU is defined as

(8)

where is a permutation of satisfying

(9)

Our resource allocation procedure will depend on the prefer-
ence lists of both SU pairs and PUs. To exploit stable matching
from graph theory for resource allocation, more definitions are
needed. A matching in a bipartite graph is a set of pairwise
non-adjacent edges. Given a matching in a bipartite graph with
partition sets and , with (respectively, ) consisting
of nodes represent SU pairs (respectively, PUs), if an SU pair is
matched with a band/PU, we may allocate that band/PU to that
SU pair. Hence, a matching in such a bipartite graph naturally
gives a resource allocation in which each spectrum band has at
most one SU pair and each SU pair accesses at most one spec-
trum band. We call a matching in a graph perfect if all the nodes
in the graph are matched.
An edge in the bipartite graph, , between the -th SU pair

and the -th PU, denoted as , where and denote the
-th SU pair and the -th PU, respectively, is said to be unstable
relative to a matching in , if
1 ,
2 is unmatched by , or prefers over its current match

in , and
3 is unmatched by , or prefers over its current match

in .
If there is no unstable edges relative to the matching, , then
it is called stable.
Based on the above definition, it is desirable to find a resource

allocation that corresponds to a stable matching. This can be
done by using the GS algorithm [15]. In Table I, we give a ver-
sion of the GS algorithm in which PUs propose to SU pairs (see
Step 2). However, the roles of PUs and SU pairs can be ex-
changed. So the GS algorithm can be presented in which SU
pairs propose to PUs. Here, we focus on the PU-proposing ver-
sion of the GS algorithm as shown in Table I.
By applying the PU-proposing version of the GS algorithm

in Table I, we have the following result (see [15]).
Lemma 1: For the complete bipartite graph in which the

number of SU nodes equals the number of PU nodes, the
PU-proposing version of the GS algorithm generates a perfect
stable matching. Moreover, for this matching, each PU is
matched to the best possibility among all stable matchings,
and each SU pair is matched to the worst possibility among all
stable matchings.
According to Lemma 1, we know that, if we apply the ver-

sion of the GS algorithm in Table I, each PU will be matched
to the best possibility among all stable matchings. That means,
the weight in the resulting stable matching for each PU is max-
imum among all the stable matchings. Thus, the sum or average
weight of the matching must be the maximum among all the
stable matchings [15].
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TABLE I
THE GALE-SHAPLEY PREFERENCE-BASED CHANNEL ALLOCATION ALGORITHM

Theorem 2: Let be a complete bipartite graph with parti-
tion sets such that (respectively, ) consists of SU
(respectively, PU) nodes. Define the weight on edges according
to (4) and (5), and define preference lists of nodes according
to (6)–(9). Then, the GS algorithm in Table I produces a stable
resource allocation that has maximum sum or average weight
among all possible stable resource allocations.
As we pointed out before, there are two versions of GS algo-

rithms, the PU- and the SU-proposing ones. In general, the PU-
and SU-proposing versions may provide different matching
results. Next, we show that, for our studied scenario, the stable
matching produced by the version in Table I is unique, regard-
less of PU- or SU-proposing algorithm is used. By Lemma 1,
SU pairs are matched to the worst possibility among all stable
matchings after applying the PU-proposing version of the GS
algorithm. On the other hand, if we apply the SU-proposing
version of the GS algorithm, SU pairs will be matched to the
best possibility among all stable matchings [15]. Since the
weights on the edges are the same for both SU-proposing and
PU-proposing versions, the maximum sum weight among all
possible stable matchings is uniquely determined no matter
which version of the GS algorithm we use. Hence, the best
possibility and the worst possibility for each SU pair among all
stable matchings are the same. Thus, we have
Theorem 3: The stable matching produced in the Theorem 2

is unique.
The conclusion on uniqueness in Theorem 3 is the same as in

[24]; but the procedure used there is different from the above.
Note that, for our scenario, this uniqueness conclusion implies
that the same allocation results are obtained regardless of which
version of GS algorithm is applied.
Note that Theorem 3 holds if (4) is replaced by a different

utility function, as long as the preference lists of SU pairs and
PUs are calculated from the weight function on the edges.

IV. ALMOST STABLE RESOURCE ALLOCATION

In the previous section, we proposed a stable resource allo-
cation scheme based on the GS algorithm and discussed some

of its properties. However, the stable matching results need not
be robust to CSI variation. In fact, CSI variation of one channel
may lead to a totally different stable matching result, which is
not desirable in practice, especially when the number of nodes
in the system is large. To measure the system robustness, we use
the amount of variation of the resource allocation after CSI vari-
ation as a metric. Based on our definition, with CSI variation,
the larger the resource allocation variation is, the less robust the
system is to the CSI variation and vice versa.
To improve the robustness of the resource allocation scheme

with respect to CSI variation, we consider a truncated GS al-
gorithm. Instead of executing the GS algorithm fully to get a
stable resource allocation, the truncated GS algorithm outputs
a resource allocation result after executing a fixed number of
rounds in the GS algorithm. Note that the GS algorithm, as
in Table I, consists of a number of asking-accepting/rejecting
rounds; during each round the PUs propose to the SU pairs and
the SU pairs answer the proposals. Denote by the number of
rounds we execute the algorithm. From [21], based on the trun-
cated GS algorithm, a change of CSI of one node will only af-
fect the part of resource allocation within distance from the
node of the change. Comparing to the stable resource allocation,
where a change of CSI of one node may affect all nodes in the
system, allocation based on the truncated GS algorithm should
be much more robust to the CSI variation.
The resulting resource allocation from the truncated GS al-

gorithm may be unstable. To measure the stability of such re-
source allocation, we introduce the concept of -stable (or al-
most stable) matching. Let be given. The matching, ,
in the graph, , is said to be -stable if the number of unstable
edges in is at most , where is size of . Let
be the maximum degree of nodes (i.e.,

, where are the numbers of edges at the -th SU
pair and the -th PU, respectively). For the -stable matching,
we have the following theorem from [21]:
Theorem 4: By executing at most rounds of the GS

algorithm, we can find an -stable resource allocation.
The detailed proof for Theorem 4 can be found in [21]. Based

on the procedure in [21], we can further bound the number of
execution rounds by using , the maximum
degree among the nodes representing SU pairs only.
Theorem 5: By executing at most rounds of the GS

algorithm, we can find an -stable resource allocation.
Our proof of Theorem 5 follows the same procedure as that

of Theorem 4 by using the maximum degree among nodes for
SU pairs, , instead of the maximum degree of all nodes, .
It is clear that . Hence, in practical scenarios, the bound
in Theorem 5 is tighter than the bound in Theorem 4 from [21].
Besides the stability property, we also concern about the

utility of resource allocation. Given one resource allocation,
, its utility, denoted as , is defined as the sum utilities of

PUs/SU pairs in . Let denote the stable resource allocation
produced by the GS algorithm, with as the corresponding
utility. A resource allocation, , is a -approximation
of the maximum-weight stable matching if its utility, ,
satisfies . For the truncated GS algorithm,
we have the following conclusion regarding its utility and the
detailed proof is in the Appendix.
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Theorem 6: By executing at most rounds of the GS
algorithm, we can find a -approximation of themaximum-
weight stable resource allocation.
In [21], the result based on the truncated GS algorithm is com-

pared with the maximum-weight resource allocation (instead of
stable resource allocation). For the scenario studied by us, it
is more reasonable to compare the result from truncation with
other stable resource allocation.
The robustness of the resource allocation from the truncated

GS algorithm is affected by , the number of rounds the GS
algorithm is executed. A change in the bipartite graph only af-
fects the result in the radius- neighbourhood of the changing
point, instead of the whole resource allocation result [21]. The-
orems 5 and 6 provide upper bounds on to achieve -stability
and -approximation of the maximum-weight stable re-
source allocation, respectively. Both bounds depend only on
and . Given , decreasing is expected to help decrease the
required number of executing rounds, . From these observa-
tions, several algorithms for decreasing are developed in the
next section in order to achieve robust designs.

V. EDGE-CUTTING FOR ROBUST DESIGN

Based on our discussion in the previous section, the robust-
ness of resource allocation obtained from the truncated GS al-
gorithm depends on the number of rounds, say , of the GS al-
gorithm that we execute. Smaller leads to higher robustness.
Since the smallest to achieve -stability or -approxi-
mation depends on the instantaneous CSI, we instead focus on
reducing the upper bounds on .
From Theorems 5 and 6, the upper bounds on to achieve

-stability or -approximation are related to , the max-
imum number of available bands of any SU pair. Both bounds
can be decreased by decreasing . Thus, to improve robustness
of resource allocation, a small is preferable. It is possible that
SU pairs only access CSI of a small number of PU bands, and

is small naturally. However, PUs, in order to improve their
own utilities, may be willing to share their information to attract
more SU pairs, as in the spectrum trading scenario [13]. In this
case, the maximum number of bands available at SU pairs, ,
may be large. Note that, the number of available bands for the
-th SU pair is the number of edges connected to it in the con-
structed bipartite graph.
For robust design, we propose edge-cutting algorithms to de-

crease the maximum number of edges connected to SU pairs,
. In other words, if the number of available bands at the -th

SU pair, , is larger than a given threshold, denoted as ,
it will be asked to give up some bands before performing re-
source allocation. In the following, two different types of edge-
cutting algorithms will be developed: direct edge-cutting (DEC)
that cuts edges based on the preference lists, and GS-Based
Edge-Cutting (GSEC) that cuts edges based on the GS algo-
rithm.

A. Direct Edge-Cutting (DEC)
In this part, we propose ways to delete edges according to the

preference lists of SU pairs and/or PUs. We will first describe
a general approach that depends on a parameter , and
we get two special approaches by letting or .

For the edge, , between the -th SU pair and the -th
PU , let if is the -th element on 's preference
list, and if is the -th element in 's preference
list. We set a preference value on the edge as a convex
combination of and , which can be expressed as

, where . We let each SU pair keep
(a fixed constant) edges that have the highest preference

values. So in the resulting graph, each SU pair is incident with
precisely edges. We call this process SP-preferred DEC
(SP-DEC) algorithm, as it can be based on the preference lists of
both SUs and PUs. The weight factors can be adjusted according
to the priorities in the preference lists of SU pairs and PUs. We
consider two extreme cases: and .
When , then SP-DEC keeps edges at each SU pair

that is at the top of its preference list; this approach is called
SU-preferred DEC (S-DEC) as it only takes SU's preference
lists into consideration.
When , then SP-DEC keeps edges at each SU pair

with the highest preference values (we can randomly choose
the edges that have same preference value), and those edges
occur at the top of PUs' preference lists; this approach is called
PU-preferred DEC (P-DEC) as it takes PUs' preference lists into
consideration.

B. GS-Based Edge-Cutting (GSEC)
The DEC procedures described above reduce the maximum

number of edges connected to the SU pairs, and are easy to im-
plement. However, they do not take the original GS matching
process into account. Hence, the resource allocation results ob-
tained from the GS algorithm after the DEC procedures may be
quite different from the result obtained by applying the GS algo-
rithm on the original graph. Moreover, it is possible that certain
SU pairs with similar preference lists will compete with each
other, so there is a chance that some of them are not allocated
any resource.
For instance, consider a system with two PUs, and , and

two SU pairs, and , where both and prefer to ,
and both and prefer to . Applying the GS algorithm in
Table I, is assigned to , and is assigned to . However,
the result can be different if we apply the GS algorithm after a
DEC procedure. Set , so that the maximum number
of edges connected to each SU pair is one. Applying S-DEC, we
obtain a graph in which both and are connected to , but
not to . Then applying the GS algorithm to the new graph,
is allocated to the channel of , but cannot transmit.
In order to use DEC to obtain a resource allocation result

closer to the result obtained by applying the GS algorithm, we
propose an edge-cutting algorithm based on the GS algorithm
(GSEC algorithm). In general, the edges involved in the first
few rounds of the GS algorithm will be kept. However, minor
changes are made to satisfy the requirement on the maximum
number of edges connected to each node representing an SU
pair. In order to make sure the maximum number of edges con-
nected to each SU pair is , each SU pair can reject at most

edges during the GS process. We now describe the
GSEC algorithm. See Table II.
First, a vector is used in which the th coordinate,
, records the number of edges rejected by the th SU pair, .
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TABLE II
GS-BASED EDGE-CUTTING (GSEC) ALGORITHM

Initially for all , and all SU pairs are involved. During
each round of the GS algorithm in Table I, each PU asks its
most preferred SU pair. At the end of a round, increase by
the number of edges/PUs rejected by during this round, and
update , the set of the indices of the PUs who have asked

during this round. There are three cases after executing a
particular round of the GS algorithm:

, and .
If , then the number of PUs rejected by has

not reached the limit; in this case, keep all edges between and

the PUs with indices in , and remains in the process for the
next round.
If then the number of PUs rejected by

reaches the limit; keep all edges between and the PUs with
indices in , but is removed from the process.
Now assume . Then the number of PUs re-

jected by exceeds the limit. So will be removed from the
process. To meet the requirement that , we remove

PUs with indices in . There are different
ways to remove PUs with indices in . A natural way is to re-
move those PUs with the lowest ranks in the
preference list of . Thus, the process keeps the PUs on the top
of 's preference list, and it is independent of other PUs and SU
pairs.
The GSEC process stops when all SU pairs are removed from

the process or when theGS algorithm stops. It is possible that the
GS algorithm stops before all SU pairs are removed. In this case,
all PUs and SU pairs are matched. If this case occurs,

edges can be added for each that is still in the process.
Therefore, when the GSEC process stops, each SU pair will

have edges. The detailed algorithm is given in Table II.
Note that, during the process of the GSEC, a matching will be
generated as well. This matching will be the same as the one
if we execute the GS algorithm on the bipartite graph from the
GSEC. Thus, we can use thematching generated from theGSEC
directly for resource allocation without running the GS algo-
rithm again.
To illustrate the difference between GSEC and DEC, we

apply GSEC algorithm to the example at the beginning of this
subsection. Both PUs, and , ask the first SU pair, ,
during the first round. Since the can only keep
edge and it prefers over , it keeps only the edge ,
and leaves the process. In the second round, the second PU,
, asks the second SU, , and keeps the edge . The GS

algorithm stops. (Since both and have edges,
no extra edges need to be added.) Based on the graph after
GSEC, will be allocated to the channel of while will
be on the channel of . This resource allocation result is the
same as the original GS algorithm while the maximum number
of edges connected to each SU pair is one after the GSEC.
Therefore, resource allocation based on the GSEC process
might give a result that is closer to the original GS algorithm
while reducing the maximum number of edges connected to
individual SU pairs.
Remark 1: Essentially, both DEC and GSEC shorten the pref-

erence lists of SU pairs and PUs. Any change on the deleted
edges has no impact on the resource allocation results. This also
explains why the edge-cutting algorithms improve robustness of
the resource allocation.
Remark 2: After edge-cutting, some of SU pairs may not

be able to find suitable channels. Consider the example at the
beginning of Section V-B, only the first SU pair can transmit
after DECwhile both of them can transmit without edge-cutting.
In the next section, a multi-stage edge-cutting algorithm will be
proposed to mitigate this problem.
Remark 3: In addition to improving the robustness of re-

source allocation, edge-cutting also reduces the computational
complexity.
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VI. MULTI-STAGE EDGE-CUTTING

In the previous section, we proposed two different types of
edge-cutting algorithms (DEC and GSEC) to reduce the max-
imum number of channels available at individual SU pairs after
edge-cutting, , to improve the robustness of resource allo-
cation with respect to the CSI variation. We expect that resource
allocation results are more robust when is made smaller.
However, if is too small (so the number of channels avail-
able at each SU pair is small), some SU pairs may not be able
to find suitable channels to transmit. To mitigate this problem,
we propose a multi-stage (MS) edge-cutting algorithm.
The basic idea of the MS algorithm is to operate the GS algo-

rithm after DEC or GSEC algorithms several times and to ad-
just the edge-cutting result during the procedure to increase the
number of SU pairs that are allocated channels to transmit. The
procedure is called MS algorithm, briefly described as follows.
First, the DEC or the GSEC algorithm is operated on the original
graph and then the GS algorithm. (This is the same as the proce-
dure in Section V.) We then output the corresponding edge-cut-
ting result only for the SU pairs who have been assigned chan-
nels. Remove the matched SU pairs, the corresponding matched
PU nodes, and the edges among them from the procedure. De-
note the sets of remaining SU pairs and PUs as and , re-
spectively. Note that no SU pair in was asked by any PUs
in the previous stage since if one SU pair was asked, it was
assigned a channel and would not be in . Thus, the nodes
in has no impact on the previous stage. Then, we can ig-
nore all previous procedures related to nodes in and con-
duct the edge-cutting and the resource allocation again based
on the subgraph of the original graph constituting of all nodes in

, and corresponding edges. Through this way, the max-
imum number of edges connected to each SU pair involving in
the MS algorithm is still . Repeat the procedure until all
nodes are removed. The detailed procedure is given in Table III.
Moreover, like the GSEC algorithm, the MS algorithm will

generate a matching during the process. This matching will be
the same as the one if we execute the GS algorithm on the output
bipartite graph from the MS algorithm and thus, can be used
directly for resource allocation.
In general, by using theMS algorithm, the number of SU pairs

which can transmit increases while the maximum number of
edges connected to each SU pair kept in the graph is still .

VII. NUMERICAL RESULTS

In this section, numerical results are presented to show the
performance of the proposed algorithms in the application sce-
nario where the number of users is large and the number of chan-
nels with CSI variation is small. Here, we consider the case with
200 SU pairs and 200 PUs, i.e., and assume all
CSI is known. Results are averaged after 20 000 trials. For each
trial, algorithms are executed once based on the original CSI
and then, conducted second time by changing CSI of 5 SU pairs.
The utility gap shown in Figs. 3(b), 4(b), and 5(b) is defined as

, where is the sum utility based on the GS algo-
rithm and is the utility based on the proposed algorithm. The
SU allocation variation is defined as the number of SU pairs with
different allocation results after CSI change. The SU allocation

TABLE III
MULTI-STAGE (MS) EDGE-CUTTING ALGORITHM

variation saving in Figs. 3(a), 4(a), and 5(a) is the relative value
compared to the GS algorithm. We also show the allocation dif-
ference between each proposed algorithm and the GS algorithm,
which is defined as the number of SU pairs with different alloca-
tion results between a proposed algorithm and the GS algorithm.
For a resource allocation scheme, smaller resource allocation
variation means higher robustness to the CSI variation. For all
results, we set the signal-to-noise ratios (SNRs) between any
SU pair and any interference channel from SU transmitter to
the PU receiver as 0 dB and dB, respectively. Interference
threshold is dB and the maximum transmit power is 10 dB.

A. Single-Stage Truncation or Edge-Cutting
Figs. 3(a) and (b) show the impact of the maximum number

of available bands for each SU pair, , on allocation varia-
tion saving and utility, where . Fig. 3(a) shows that the
reduction in increases the robustness of resource alloca-
tion for all edge-cutting algorithms. Even though smaller
leads to a larger utility gap from the GS algorithm as shown in
Fig. 3(b), the saving on SU allocation variation is significant
compared to that of the utility gap.
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Fig. 3. Performance for algorithms with truncated or edge-cutting. (a) SU
allocation variation saving. (b) Utility gap. (c) Resource allocation difference.

Next, let us compare the performance of the truncated GS al-
gorithm and the edge-cutting algorithms. Fig. 3(a) shows that
when is small, the edge-cutting algorithms may provide
higher resource allocation robustness than the truncated GS al-
gorithm. When is large, the truncated GS algorithm can
provide more robust results. For the utility gap in Fig. 3(b), ex-
cept for the GSEC before CSI change, it is larger for edge-cut-
ting algorithms than for the truncated GS algorithm when
is small, and the other way around when is large. Exe-
cuting the GSEC algorithm before CSI change can provide a
negligible performance gap from the GS algorithm. This is due

Fig. 4. Performance for algorithms with truncation and edge-cutting. (a) SU
allocation variation saving. (b) Utility gap. (c) Resource allocation difference.

to the fact the edges kept by the GSEC algorithm are based on
the GS algorithm, and almost all edges involved in the GS algo-
rithm are kept. The advantage cannot be maintained after CSI
changes. But, the GSEC algorithm still provides smaller utility
gap than DEC algorithms. Different DEC algorithms have sim-
ilar performance.
As we discussed in Section V-B, it is expected that resource

allocation results from GSEC are closer to those from the GS al-
gorithm than those from DEC, which is illustrated in Fig. 3(c).
GSEC provides the same resource allocation result as the GS
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Fig. 5. Performance for different multi-stage algorithms. (a) SU allocation
variation saving. (b) Utility gap. (c) Resource allocation difference.

algorithm even when the maximum available channels allowed
at each SU pair is only 10% of all channels, i.e., .
However, the DEC algorithms always provide resource alloca-
tion results that are different from those from the GS algorithm.
This advantage of GSEC is only significant for the case before
CSI change. After CSI change, the performance gap becomes
smaller since GSEC is operated based on the CSI before change.
Comparing the results in Fig. 3(a), GSEC loses certain level of
robustness in order to get resource allocation results closer to
those from the GS algorithm. This is the case because the more

the algorithm depends on the original graph, the more sensitive
it is to change on the graph (i.e., the CSI variations).

B. Single-Stage Truncation and Edge-Cutting
Besides operating truncation or edge-cutting separately, these

operations can be combined. For example, we can fist apply
edge-cutting algorithms on the original graph. We then run the
GS algorithm on the new graph, and stop when we obtain a re-
source allocation that is -stable or is an -approximation
compared with the results on the original graph. Figs. 4(a) and
(b) show the SU allocation variation saving and utility perfor-
mance, respectively. The results based on truncation only are
also provided for comparison reason. Moreover, all three DEC
algorithms have similar performance, and only results based
on S-DEC are provided here. As increases, the perfor-
mance curves of algorithms with edge-cutting and truncation
converge to that of the truncated only algorithm, instead of to
that of the original GS algorithm. Compared with the results
in Figs. 3(a) and (b), utilizing both edge-cutting and truncation
can result in higher SU allocation variation saving accompanied
a larger utility gap. The resource allocation difference is shown
in Fig. 4(c). For all edge-cutting algorithms with truncation, the
number of different resource allocations is larger compared to
that from the edge-cutting only case and the performance curve
converges to the truncation only case as increases.

C. Multi-Stage Truncation and Edge-Cutting
In this part, the performance of theMS algorithm is presented.

Figs. 5(a) and (b) show the utility gap and SU allocation vari-
ation saving, respectively. With the help of the MS algorithm,
the utility gap between the MS algorithm and the original GS
algorithm is significantly reduced compared with the single-
stage algorithm. The gap based on the CSI before the change
is negligible while there is a small gap, less than 0.5%, after
the CSI change. However, the SU allocation variation saving
is smaller compared with the corresponding single-stage algo-
rithms. Comparing results based on different edge-cutting al-
gorithms, the utility gap for MS GSEC is slightly larger than
the MS DEC algorithms while it can have higher SU allocation
variation saving. This is different from the single-stage case. For
MS GSEC, it can allocate more SU pairs in the first stage and
the impact of the latter stages is smaller compared to the other
DEC algorithms. Thus, it can keep higher SU allocation varia-
tion saving than the single-stage algorithm while the utility gap
is larger as well.
Moreover, Fig. 5(c) shows the allocation difference between

the MS algorithm and the original GS algorithm. Comparing
with the results in Fig. 4(c), the number of allocation difference
based on the MS algorithms is smaller than the one from the
single-stage algorithm.

VIII. CONCLUSION
In this paper, we have studied robust resource allocation for

CR networks. First, we develop a resource allocation scheme
based on stable matching, which takes both SU pairs' and PUs'
preferences into account. We then discuss the properties of al-
most stable resource allocation, which is robust to the CSI vari-
ation compared with stable resource allocation. Based on the
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properties of almost stable resource allocation, we propose the
DEC and GSEC algorithms to further improve the robustness
of the resource allocation scheme. The MS algorithms are then
discussed to compensate for possible losses from the DEC and
GSEC algorithms. Numerical results show that our proposed
schemes are robust to the CSI variations.

APPENDIX A
PROOF OF THEOREM 6

The proof of Theorem 6 follows an argument in [21]. Let
denote the number of rounds we execute the GS algorithm.

For , let denote the matching at the end of
-th round. The -th SU pair is denoted as , and the -th PU

is denoted by . Define as a weight function on edge. So
is the weight of edge between and . If is

matched at the end of the -th round, we use to denote
the PU matched to . Let denote the set of those SU
pairs which have not rejected at the end of -th round (which
is called the candidate set of ).
During any round, each PU removes at most one SU node

from its candidate set, since each PU proposes to at most one
SU pair during any round. The edge is called lost if
is removed from the candidate set of . We use to denote
the set of the lost edges by the end of the -th round. For ,
the matching at the end of the -th round, we define the weight
of as (if is matched in ) and

(if is unmatched in ), where
, see (4) and (5). Then, the total weight

of the matching can be expressed as

(10)

where denotes the set of SU nodes. Moreover, the total
weight of the edges in , denoted as , is defined as the
sum of weights of the edges in .
We define the potential of , denoted as , as follows.

If is matched in or then set .
Otherwise, set

(11)

which is the maximum weight of edges connecting to the SU
pairs in . The total potential of the matching at the
end of -th round is the sum of the potentials of all PUs, that is,

(12)

where denotes the set of PU nodes.
Lemma 7: For .
Proof: Let denote the -th PU node. If then

is not matched by and . Thus, during the
-th round, is rejected by some SU pair, say (the -th SU

node), and the edge is lost. So .

Note that prefers over other SU pairs in , which
means, . Hence,

and the lemma is proved.
Lemma 8: For .
Proof: Since and

, we compare and for each
.

If is matched in both and , then by definition,
.

If is matched in , but not in , then by definition,
.

Now assume that is matched to some in
but is not matched in . Then and

, where is such that .
Moreover, since in the -th round, must reject and accept
another PU, say with , we have
and . Thus,

which is equivalent to

By summing up over all PUs, we have .
Lemma 9: For .
Proof: By Lemmas 7 and 8,

.

Lemma 10: For all .
Proof: Let denote the -th SU pair and denote the -th

PU. If (i.e., lost by the end of the -th round), then
is matched to a better choice, , by the end of the -th

round. That is, . Since can lose at most
edges, the total weight of all lost edges adjacent to is

at most . Hence, by summing over all SU
pairs, we obtain .

By Lemmas 9 and 10, we have
Lemma 11: For any real and integer

.
Next, we present the proof of Theorem 6.
Proof: Let be the unique stable matching produced by

the GS algorithm. We use to denote the -th SU pair and
to denote the -th PU. Suppose .
Note that when is matched to in for some (pos-

sibly ), prefers over and
. Also note that when is not matched in , then

has not asked , and .
Hence,
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and therefore

From Lemma 11, we conclude that

whenever .
Thus, Theorem 6 follows by choosing .
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